
A Novel Approach to Studying Human Movement
Machine Learning Driven Biomechanical Analysis of Throwing Motion 
Using Bidirectional Long Short-Term Memory and Temporal Attention 

Models

Biomechanics is the science of human movement, playing a critical role in injury prevention, rehabilitation, sports 
performance, and many more challenges we face in our everyday lives.

Despite its widespread importance, biomechanics research is significantly limited, overlooked both outside elite 
sports and within general scientific inquiry–especially in everyday activities and youth athletics, where early 
movement patterns profoundly shape long-term outcomes.

Therefore, this project uses the throwing motion in baseball as a demonstration of how low-cost, wearable 
technology can be leveraged to build accessible biomechanical models. Baseball throwing was specifically 
chosen for several reasons:

Complexity
The throwing motion in baseball involves the precise timing 
of the hips, torso, shoulder, and elbow (Fig 1.1). Observing 
this complex dynamic chain allows for an in-depth exploration 
of how energy transfers throughout the body.

Injury Prevalence
Nearly 30% of youth baseball players experience elbow pain
(Matsuura et al., 2013). Throwing a baseball involves arm 
rotations exceeding 7,000 degrees per second, making 
throwing among the fastest and most physically stressful 
human motions known (Fleisig et al., ASMI). This is equivalent
 to approximately 1,200 RPM, around the same as the 
rotational speed of a car engine when cruising at 50 mph! 

These statistics highlight the significant risk of injury in the 
sport, something that urgently needs to be addressed. 

Existing Literature
Though biomechanical research still contains many unexplored 
areas, throwing mechanics have been extensively studied 
compared to other movements. This provides a strong 
foundation of comparisons, concepts, and benchmarks for
validation. 

Inaccessibility
Tools for baseball development, particularly throwing 
development, are extremely expensive. Devices cost over 
$8,000, with motion capture systems exceeding $100,000!

Ultimately, the in-depth analysis of this mechanically complex 
motion demonstrates methods that address existing issues in 
both the sport of baseball and many other areas in physical 
wellness.

Future work in this project regarding biomechanics includes:
● Expanding Dataset: Further work will include expanding the dataset, increasing the range and variety of the data. 

This will serve the purpose of developing and generalizing the model further.
● Addressing Bias: Due to the dominance of right-handed throwers in the sport, a bias exists against left-handed 

throwers. This will be addressed in the model through various preprocessing solutions and feature-adding.
● Expanding Domains: Currently, this system is still closely tied to the sport of Baseball, however, it will be expanded 

to include domains in rehabilitation, early detection of neurological diseases, physiotherapy, and many more.
● Commercialization: The system developed will be commercialized for the purpose of garnering feedback and gaining 

access to further resources. Resources will be used to expand and deepen current work.

Results
The developed model achieves a Mean Absolute Error (MAE) of 3.5 mph on the 
test set. This level of accuracy indicates that the model is effectively capturing 
subtle biomechanical patterns that correlate with throwing velocity — highlighting 
its ability to detect and interpret key movements within the kinetic chain!

Data Collection
To collect data, participants wore two Velcro straps: the first, containing the microcontroller
and an IMU sensor, was worn around the hip like a belt; the second, containing another
sensor, was worn as a band on the upper throwing arm. The system was powered via a 
USB-C cable connected to the Arduino and an external power source, such as a 
smartphone or portable battery.

The author leveraged connections within the baseball community to recruit 20 players. 
Each player performed approximately 20 throws while wearing the sensors, resulting in 
a dataset of over 400 throws—about 120,000 timesteps, or individual data points in 
total—used to train the model.

Preprocessing & Feature Engineering
Sensor fusion
Sensor data from both IMUs was fused using a Complementary Filter to create a unified 
time-series input, combining accelerometer and gyroscope readings from the hip and shoulder. 

Normalization
Since these sensors output in different units (e.g., m/s² and °/s), normalization was applied to 
ensure consistent scaling and prevent features with larger magnitudes from dominating the learning process. Each fused data sequence 
was paired with the corresponding throwing speed, measured externally using a portable radar gun. Overall, feature engineering was 
intentionally minimal to maintain model interpretability and enable meaningful analysis of the learned attention weights. In total, 
20 features are passed to the model. The first 12 are raw IMU values, while the last 8 are the fused data from both sensors.

Padding
Throwing data varies in length, yet the framework used, TensorFlow, requires a fixed length input. Thus, data 
was padded with zeros to match the length of the longest throwing sequence.

Model Architecture
A Bidirectional Long Short-Term Memory (BiLSTM) architecture was chosen for its ability to handle 
time-series data and capture the dependencies between time steps. The specific choice of using a BiLSTM
over a standard LSTM came down to the ability of a BiLSTM to learn both forward and backward dependencies. 

To enhance the model's understanding of which time steps are most relevant for prediction, a 
Temporal Attention layer was added. This allowed the model to weigh different parts of the motion
sequence dynamically, focusing on the most important moments in the throwing motion regardless
of their position in the sequence.

The model architecture is as follows:
● Input: (timesteps, 20)
● Masking layer
● BiLSTM, 64 units
● BiLSTM, 32 units
● Temporal Attention layer 
● Dense Layer, 64 units, ReLU activation
● Dense Layer, 32 units, ReLU activation
● Dropout, 30% of nodes
● Output Layer, 1 unit

Training
Model training parameters:
● Optimizer: Adam
● Loss Function: Mean Squared Error (MSE)
● Metrics: Mean Absolute Error (MAE)
● Batch Size: 4
● Epochs: 75
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By dissecting the throwing motion using low-cost wearable sensors, this 
innovation demonstrates a scalable approach to analyzing human movement – 

with potential applications in neurological disease detection, sport, 
rehabilitation, education, and everyday health.

In sports and rehabilitation, understanding the transfer of kinetic energy through the human body is critical. 
Throwing, in particular, involves a complex kinetic chain of motion, starting from the legs and hips, traveling through 
the torso and shoulder, and ultimately delivering force through the hand. This project introduces a low-cost system 
for evaluating the kinetic chain using wearable IMUs and machine learning. By analyzing the learned weights of 
the model, notably the attention weights, key components of the throwing motion that contribute to an efficient 
kinetic chain can be identified. 

This system is not only useful for sport, but also has broader implications across many other fields. By enabling the 
study of human biomechanics through throwing motion, this work represents a significant step toward 
groundbreaking applications in rehabilitation, physiotherapy, ergonomics, mobility, clinical gait analysis, and 
the development of humanoid robots.

INTRODUCTION

Recurrent Neural Networks
The Recurrent Neural Network (RNN) is a type of neural network designed for sequential data such as motion 
signals. RNNs operate over sequences by processing one data point at a time, passing information from one time 
step to next. This architecture enables the network to capture temporal dependencies in the data. A Bidirectional 
Long Short-Term Memory (BiLSTM) model is a type of RNN.

A key issue that vanilla RNNs suffer from is the vanishing gradient problem, where gradients diminish as they are 
propagated backward through time. This makes it difficult for the network to learn long-term dependencies, 
especially in longer sequences—rendering standard RNNs largely obsolete for modern applications.

LSTM, GRU, and Transformers
The Long Short-Term Memory (LSTM) architecture addresses this limitation by introducing a dedicated cell state 
that persists over time and interacts with a set of gates to control information flow. This enables LSTMs to retain 
and learn long-term dependencies, making them a strong candidate for analyzing motion sequences.

Two other architectures were considered:
● The Transformer, which has become state-of-the-art in many domains, such as Large Language Models 

(LLMs) was ruled out due to its requirement for very large datasets and computational resources—constraints 
that are often impractical in motion analysis.

● The Gated Recurrent Unit (GRU), a simplified version of the LSTM with fewer gates, was also considered. 
However, GRUs are generally less expressive and may not capture complex temporal patterns as effectively 
as LSTMs, making them less suited for this application.

Bidirectional LSTM (BiLSTM)
After thorough evaluation, BiLSTM was selected as the optimal architecture. BiLSTMs extend the capabilities of 
traditional LSTMs by processing the input sequence in both forward and backward directions. This allows the model 
to learn from past and future context simultaneously, leading to better predictive performance. In motion data, 
knowing what happens both before and after a given timestep enhances the model’s understanding of movement 
dynamics.
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In the context of this project, a Temporal Attention Mechanism is 
used to dynamically weight each time step in the throwing motion 
according to its relevance to throwing velocity prediction.

Unlike standard recurrent layers (RNN, BiLSTM, GRU, etc.),
which treat all time steps equally, utilizing Temporal Attention 
allows the model to focus more on critical biomechanical 
events such as peak hip rotation velocity, shoulder 
external/internal rotation, and arm acceleration prior to release. 

Furthermore, because the raw sensor sequence contains some irrelevant motion, such as preparatory movements 
before the throw, the Temporal Attention mechanism learns to downweight these regions, improving model 
performance.

TEMPORAL ATTENTION

This system successfully demonstrates how wearable sensors and deep learning can integrate to analyze complex 
human movements. No other system has been developed with such a low-cost (~$75 in total) while 
maintaining high accuracy (sub-4 MAE) and analyzability through a novel method of using attention 
mechanisms. Most previous approaches use high-end IMUs that cost more than $100 each or focus solely on 
performance rather than interpretability. By focusing on the kinetic chain, the system represents a significant step 
in both sports science and healthcare innovation. It opens new opportunities to young athletes in democratizing 
advanced tools, but more importantly, it introduces techniques for use in a wide variety of fields. The applications of 
the techniques introduced in this system are broad, and include:
● Sports Performance: Helping athletes analyze and optimize throwing mechanics to maximize speed in real 

time.
● Injury Prevention: More effectively detecting inefficiencies in the dynamic chain that may contribute to joint 

stress or overuse.
● Healthcare & Rehab: Affordably get real-time feedback to help guide correct motion in daily movement 

exercises.
● Prosthetics, Assistive Technology, & Robotics: Track residual limb motion or intention to improve real-time 

response.
● Ergonomics & Workplace Safety: Monitor the motion of workers to prevent repetitive strain injuries.

CONCLUSION

FUTURE IMPROVEMENTS

Sensors
The system used in this project consists of two MPU6050 IMUs mounted on the
hip and upper throwing arm. IMUs, or Inertial Measurement Units, are electronic
devices that measure and report the acceleration (using an accelerometer), 
angular velocity (using a gyroscope), and sometimes orientation (depending 
on the device; MPU6050s do not provide orientation). 

Microcontroller
Both IMUs are connected via wire to an Arduino UNO R4 Wifi, a microcontroller, 
through the communication protocol I2C. (Technical detail: Because the two 
sensors share the same I2C address by default, the address was modified on 
the hip sensor by connecting AD0 to 5V.) Communication between computer 
and microcontroller uses a Bluetooth module on the Arduino UNO for real-time 
wireless data transfer.  

Software
A C++ Arduino sketch was developed to control the Arduino UNO R4, enabling it to collect data from both 
MPU6050 sensors and transmit it wirelessly via Bluetooth. Each sensor provides 3-axis acceleration and 3-axis 
gyroscope data, yielding a total of 12 features per timestep.

On the host computer, a Python-based data acquisition script was implemented to receive and log the sensor 
data in real time, storing it in CSV format for subsequent analysis.

In addition, a TensorFlow-based machine learning framework was designed and implemented to handle the full 
modeling pipeline. This framework encompasses data preprocessing, exploratory analysis, model training, and 
inference, forming the computational backbone of the system’s predictive capabilities.

Fig 2.1 MPU6050 IMU 
(electricwings.com)

Fig 2.2 Arduino UNO R4 
WiFi microcontroller.

 SYSTEM DESIGN

Fig 3.1 Sensor placement. Fig 3.3 Raw data from hip IMU.

Fig 3.4 Hip IMU data, after sensor fusion using Complementary filter.

Fig 5.1 Visualized RNN (Stanford CS320)

Fig 5.2 LSTM Cell (Varsamopoulos et al., 2018)

Fig 3.5 Mean Absolute Error over 75 epochs. Fig 3.6 Attention weights being learned by model.

Fig 4.2 Distinct groups are present, 
indicating that the model is learning crucial 
patterns.

Fig 4.1 Prediction error on test set. 
Red line denotes most optimal model 
possible. Fig 4.3 Comparison of actual and predicted throwing speeds on test set.

Fig 6.1 Motion vs Attention

Fig 4.4 Broader activations reflect effective transfer of 
energy, leading to higher velocity throws.

Fig 4.5 Short, narrow activations indicate lack of full-body 
movement and over-reliance on the arm, increasing injury 
risk and leading to slower throws.

Fig 3.2 Collecting data.

Motion Data
Shape: (20 features, length) 

Bidirectional 
LSTM
64 Units

Temporal Attention

Dropout
30% of nodes

Dense
64 Units

ReLU activation

Dense
32 Units

ReLU activation

Dense 
(Output)

32 Units
Linear activation

Bidirectional 
LSTM
32 Units

Fig 1.3 (Fleisig et al., 
1995) Loads are 
equivalent to holding 
60 lbs in this position. 
(Corocan, 2019)

Fig 1.2 (Fleisig et al., 1995) 
During arm acceleration, the 
arm experiences angular 
velocities of almost 7,000 
degree/sec making it one of 
the fastest human motions. 
Additionally, the rotator cuff and 
labrum experience 245 lbs of 
compressive force. (Corocan, 
2019)

Fig 1.1 Phases of the throwing motion (physio-pedia.com) 

Biomechanical Insight
By analyzing the attention maps generated by the model, key biomechanical features that correlate with throwing velocity can be found. 
High-speed throws consistently show strong and broad activations across many sensor channels, particularly the hip region. Throughout the 
activations, hip gyroscope channels light up, suggesting effective pelvis rotation. These reflect effective transfer of energy through the kinetic 
chain, where motion originates from the lower body and flows efficiently through the torso to the throwing arm. The model appears to recognize 
this coordination as a hallmark of powerful throws. A key biomechanical indicator captured by the attention maps is hip-shoulder separation—a 
known performance driver in throwing. The attention-weighted focus on hip movement before shoulder rotation mirrors this concept, reinforcing its 
importance in high-velocity throws. In contrast, lower-speed throws exhibit narrower, localized activations and show disproportionate focus on 
the shoulder sensors, indicating a lack of full-body involvement. This over-reliance on the arm, rather than coordinated lower-body and core 
engagement, likely limits velocity and may increase injury risk.

Fig 1.4 Devices and systems for throwing development 
such as the ones above are often extremely expensive 
and inaccessible. (left: rapsodo.ca right: qualisys.com)


